Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis.

Identifieur interne : 000490 ( Main/Exploration ); précédent : 000489; suivant : 000491

Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis.

Auteurs : Ariel Herrera-Vásquez [Chili] ; Loreto Carvallo [Chili] ; Francisca Blanco [Chili] ; Mariola Tobar [Chili] ; Eva Villarroel-Candia [Chili] ; Jesús Vicente-Carbajosa [Espagne] ; Paula Salinas [Chili] ; Loreto Holuigue [Chili]

Source :

RBID : pubmed:26696694

Abstract

Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.

DOI: 10.1007/s11105-014-0782-5
PubMed: 26696694
PubMed Central: PMC4677692


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional Control of Glutaredoxin
<i>GRXC9</i>
Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in
<i>Arabidopsis</i>
.</title>
<author>
<name sortKey="Herrera Vasquez, Ariel" sort="Herrera Vasquez, Ariel" uniqKey="Herrera Vasquez A" first="Ariel" last="Herrera-Vásquez">Ariel Herrera-Vásquez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carvallo, Loreto" sort="Carvallo, Loreto" uniqKey="Carvallo L" first="Loreto" last="Carvallo">Loreto Carvallo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blanco, Francisca" sort="Blanco, Francisca" uniqKey="Blanco F" first="Francisca" last="Blanco">Francisca Blanco</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tobar, Mariola" sort="Tobar, Mariola" uniqKey="Tobar M" first="Mariola" last="Tobar">Mariola Tobar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Villarroel Candia, Eva" sort="Villarroel Candia, Eva" uniqKey="Villarroel Candia E" first="Eva" last="Villarroel-Candia">Eva Villarroel-Candia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vicente Carbajosa, Jesus" sort="Vicente Carbajosa, Jesus" uniqKey="Vicente Carbajosa J" first="Jesús" last="Vicente-Carbajosa">Jesús Vicente-Carbajosa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Salinas, Paula" sort="Salinas, Paula" uniqKey="Salinas P" first="Paula" last="Salinas">Paula Salinas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holuigue, Loreto" sort="Holuigue, Loreto" uniqKey="Holuigue L" first="Loreto" last="Holuigue">Loreto Holuigue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26696694</idno>
<idno type="pmid">26696694</idno>
<idno type="doi">10.1007/s11105-014-0782-5</idno>
<idno type="pmc">PMC4677692</idno>
<idno type="wicri:Area/Main/Corpus">000472</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000472</idno>
<idno type="wicri:Area/Main/Curation">000472</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000472</idno>
<idno type="wicri:Area/Main/Exploration">000472</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional Control of Glutaredoxin
<i>GRXC9</i>
Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in
<i>Arabidopsis</i>
.</title>
<author>
<name sortKey="Herrera Vasquez, Ariel" sort="Herrera Vasquez, Ariel" uniqKey="Herrera Vasquez A" first="Ariel" last="Herrera-Vásquez">Ariel Herrera-Vásquez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carvallo, Loreto" sort="Carvallo, Loreto" uniqKey="Carvallo L" first="Loreto" last="Carvallo">Loreto Carvallo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blanco, Francisca" sort="Blanco, Francisca" uniqKey="Blanco F" first="Francisca" last="Blanco">Francisca Blanco</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tobar, Mariola" sort="Tobar, Mariola" uniqKey="Tobar M" first="Mariola" last="Tobar">Mariola Tobar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Villarroel Candia, Eva" sort="Villarroel Candia, Eva" uniqKey="Villarroel Candia E" first="Eva" last="Villarroel-Candia">Eva Villarroel-Candia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vicente Carbajosa, Jesus" sort="Vicente Carbajosa, Jesus" uniqKey="Vicente Carbajosa J" first="Jesús" last="Vicente-Carbajosa">Jesús Vicente-Carbajosa</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Salinas, Paula" sort="Salinas, Paula" uniqKey="Salinas P" first="Paula" last="Salinas">Paula Salinas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holuigue, Loreto" sort="Holuigue, Loreto" uniqKey="Holuigue L" first="Loreto" last="Holuigue">Loreto Holuigue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology reporter</title>
<idno type="ISSN">0735-9640</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress.
<i>GRXC9</i>
, coding for a CC-type glutaredoxin from
<i>Arabidopsis</i>
, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using
<i>GRXC9</i>
as a model gene. We first established that
<i>GRXC9</i>
expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition.
<i>GRXC9</i>
promoter analyses indicate that SA controls gene transcription through two
<i>activating sequence</i>
-
<i>1</i>
(
<i>as</i>
-
<i>1</i>
)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the
<i>GRXC9</i>
promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a
<i>knockout</i>
mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling
<i>GRXC9</i>
expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of
<i>GRXC9</i>
indicates that the
<i>GRXC9</i>
protein negatively controls its own gene expression, forming part of the complex bound to the
<i>as</i>
-
<i>1</i>
-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of
<i>GRXC9</i>
in the context of the defense response to stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26696694</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0735-9640</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>33</Volume>
<PubDate>
<MedlineDate>2015</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology reporter</Title>
<ISOAbbreviation>Plant Mol Biol Report</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional Control of Glutaredoxin
<i>GRXC9</i>
Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in
<i>Arabidopsis</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>624-637</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress.
<i>GRXC9</i>
, coding for a CC-type glutaredoxin from
<i>Arabidopsis</i>
, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using
<i>GRXC9</i>
as a model gene. We first established that
<i>GRXC9</i>
expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition.
<i>GRXC9</i>
promoter analyses indicate that SA controls gene transcription through two
<i>activating sequence</i>
-
<i>1</i>
(
<i>as</i>
-
<i>1</i>
)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the
<i>GRXC9</i>
promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a
<i>knockout</i>
mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling
<i>GRXC9</i>
expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of
<i>GRXC9</i>
indicates that the
<i>GRXC9</i>
protein negatively controls its own gene expression, forming part of the complex bound to the
<i>as</i>
-
<i>1</i>
-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of
<i>GRXC9</i>
in the context of the defense response to stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Herrera-Vásquez</LastName>
<ForeName>Ariel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carvallo</LastName>
<ForeName>Loreto</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blanco</LastName>
<ForeName>Francisca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tobar</LastName>
<ForeName>Mariola</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Villarroel-Candia</LastName>
<ForeName>Eva</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vicente-Carbajosa</LastName>
<ForeName>Jesús</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salinas</LastName>
<ForeName>Paula</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holuigue</LastName>
<ForeName>Loreto</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Mol Biol Report</MedlineTA>
<NlmUniqueID>9880213</NlmUniqueID>
<ISSNLinking>0735-9640</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Glutaredoxin GRXC9 (GRX480)</Keyword>
<Keyword MajorTopicYN="N">NPR1-independent</Keyword>
<Keyword MajorTopicYN="N">Salicylic acid</Keyword>
<Keyword MajorTopicYN="N">TGA transcription factors</Keyword>
<Keyword MajorTopicYN="N">as-1-like element</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26696694</ArticleId>
<ArticleId IdType="doi">10.1007/s11105-014-0782-5</ArticleId>
<ArticleId IdType="pii">782</ArticleId>
<ArticleId IdType="pmc">PMC4677692</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):768-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Feb;7(2):210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22353869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 16;486(7402):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Sep;4(3):433-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Sep;19(6):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 10;280(23):21867-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Aug;8(8):2195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1024-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 1;30(3):775-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):391-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Dec;59(6):927-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Feb;64(4):963-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1890-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1018-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Oct;16(2):223-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9839467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2010 Feb 02;9(1):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20198573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jul;44(7):750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Dec 30;151(1-2):119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7828859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(1):31-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 May;70(1-2):79-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 29;414(6863):562-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Aug;7(8):944-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22836499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1795-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Dec;26(4):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Sep 25;23(18):3778-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7479010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19832945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Feb;26(2):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Jul;61(4-5):665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16897482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Dec;7(12):2241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8718629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Mar;7(3):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17076807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:839-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3670-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):336-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jun;6(6):863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jul;46(7):1062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Nov;6(11):1583-1592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 5;276(1):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11034999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Nov;25(11):1459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):34-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jan;73(1):91-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Chili</li>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
<settlement>
<li>Madrid</li>
</settlement>
</list>
<tree>
<country name="Chili">
<noRegion>
<name sortKey="Herrera Vasquez, Ariel" sort="Herrera Vasquez, Ariel" uniqKey="Herrera Vasquez A" first="Ariel" last="Herrera-Vásquez">Ariel Herrera-Vásquez</name>
</noRegion>
<name sortKey="Blanco, Francisca" sort="Blanco, Francisca" uniqKey="Blanco F" first="Francisca" last="Blanco">Francisca Blanco</name>
<name sortKey="Carvallo, Loreto" sort="Carvallo, Loreto" uniqKey="Carvallo L" first="Loreto" last="Carvallo">Loreto Carvallo</name>
<name sortKey="Holuigue, Loreto" sort="Holuigue, Loreto" uniqKey="Holuigue L" first="Loreto" last="Holuigue">Loreto Holuigue</name>
<name sortKey="Salinas, Paula" sort="Salinas, Paula" uniqKey="Salinas P" first="Paula" last="Salinas">Paula Salinas</name>
<name sortKey="Tobar, Mariola" sort="Tobar, Mariola" uniqKey="Tobar M" first="Mariola" last="Tobar">Mariola Tobar</name>
<name sortKey="Villarroel Candia, Eva" sort="Villarroel Candia, Eva" uniqKey="Villarroel Candia E" first="Eva" last="Villarroel-Candia">Eva Villarroel-Candia</name>
</country>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Vicente Carbajosa, Jesus" sort="Vicente Carbajosa, Jesus" uniqKey="Vicente Carbajosa J" first="Jesús" last="Vicente-Carbajosa">Jesús Vicente-Carbajosa</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000490 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000490 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26696694
   |texte=   Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26696694" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020